Non-synchronization of lattice and carrier temperatures in light-emitting diodes

نویسندگان

  • Jihong Zhang
  • Tienmo Shih
  • Yijun Lu
  • Holger Merlitz
  • Richard Ru-Gin Chang
  • Zhong Chen
چکیده

Pulse implementation or switching-off (PISO) of electrical currents has become a common operation in junction-temperature (Tj) measurements for semiconductor devices since 2004. Here we have experimentally discovered a substantial discrepancy between Tj values with, and without, PISO (e.g., 36.8 °C versus 76.5 °C above the ambient temperature at 25.0 °C). Our research indicates that methods associated with PISO are flawed due to non-synchronization of lattice temperatures and carrier temperatures in transient states. To scrutinize this discrepancy, we propose a lattice-inertia thermal anchoring mechanism that (1) explains the cause of this discrepancy, (2) helps to develop a remedy to eliminate this discrepancy by identifying three transient phases, (3) has been applied to establishing an original, accurate, and noninvasive technique for light-emitting diodes to measure Tj in the absence of PISO. Our finding may pave the foundation for LED communities to further establish reliable junction-temperature measurements based on the identified mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thin-film Encapsulation of Organic Light-Emitting Diodes Using Single and Multilayer Structures of MgF2, YF3 and ZnS

In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by Mg...

متن کامل

Negative differential resistance and electroluminescence from InAs light-emitting diodes grown by liquid-phase epitaxy

Negative differential resistance has been observed from InAs homojunction light-emitting diodes grown using liquid-phase epitaxy at 455 °C. The devices were characterized using current–voltage sI–Vd and electroluminescence spectroscopy measurements to obtain information about structure defects in InAs. Two distinct negative differential resistance regions were observed in the forward bias I–V c...

متن کامل

Light-emitting silicon pn diodes

We report on the electrical and optical characteristics of silicon light-emitting pn diodes. The diodes are prepared by ion implantation of boron at high doses and subsequent hightemperature annealing. Under forward bias, the diodes emit infrared electroluminescence closely below the band gap of bulk Si. We present a rate-equation model for bound excitons, free excitons and free carriers which ...

متن کامل

Quantitative modeling of the temperaturedependent internal quantum efficiency in InGaN light emitting diodes

The temperature dependence of the internal quantum efficiency (IQE) of blue InGaN-based light emitting diodes is analyzed both experimentally and theoretically with a drift-diffusion transport model. A high-performance reference structure and two improved epitaxial designs are compared at different operating temperatures. In contrast to a simple ABC model, the proposed approach allows for quant...

متن کامل

Application of Ultraviolet Light-Emitting Diodes to the Removal of Cefixime Trihydrate from Aqueous Solution in the Presence of Peroxydisulfate

The present research involves effectual parameters on Cefixime trihydrate removal from aqueous solutions. Antibiotics are the main contributions in pharmaceutical waste; their presence causes major concern. The extensive utilization of antibiotics in aquaculture and prescriptions has led to the cultivation of various antibiotic-resistant bacteria and genes in wastewater. The UV-LED/S2O82- pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016